Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
EJNMMI Radiopharm Chem ; 9(1): 32, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637347

RESUMO

BACKGROUND: Megalin (LRP2 receptor) mediates the endocytosis of radiolabeled peptides into proximal tubular kidney cells, which may cause nephrotoxicity due to the accumulation of a radioactive tracer. The study aimed to develop a cellular model of human kidney HK2 cells with LRP2 knockout (KO) using CRISPR/Cas9 technique. This model was employed for the determination of the megalin-mediated accumulation of 68Ga- and 99mTc-labeled 15-mer peptide developed to target the vascular endothelial growth factor (VEGF) receptor in oncology radiodiagnostics. RESULTS: The gene editing in the LRP2 KO model was verified by testing two well-known megalin ligands when higher viability of KO cells was observed after gentamicin treatment at cytotoxic concentrations and lower FITC-albumin internalization by the KO cells was detected in accumulation studies. Fluorescent-activated cell sorting was used to separate genetically modified LRP2 KO cell subpopulations. Moreover, flow cytometry with a specific antibody against megalin confirmed LRP2 knockout. The verified KO model identified both 68Ga- and 99mTc-radiolabeled 15-mer peptides as megalin ligands in accumulation studies. We found that both radiolabeled 15-mers enter LRP2 KO HK2 cells to a lesser extent compared to parent cells. Differences in megalin-mediated cellular uptake depending on the radiolabeling were not observed. Using biomolecular docking, the interaction site of the 15-mer with megalin was also described. CONCLUSION: The CRISPR/Cas9 knockout of LRP2 in human kidney HK2 cells is an effective approach for the determination of radiopeptide internalization mediated by megalin. This in vitro method provided direct molecular evidence for the cellular uptake of radiolabeled anti-VEGFR 15-mer peptides via megalin.

2.
Environ Sci Technol ; 58(16): 6913-6923, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593436

RESUMO

4-Nonylphenol (4-NP), a para-substituted phenolic compound with a straight or branched carbon chain, is a ubiquitous environmental pollutant and food contaminant. 4-NP, particularly the branched form, has been identified as an endocrine disruptor (ED) with potent activities on estrogen receptors. Constitutive Androstane Receptor (CAR) is another crucial nuclear receptor that regulates hepatic lipid, glucose, and steroid metabolism and is involved in the ED mechanism of action. An NP mixture has been described as an extremely potent activator of both human and rodent CAR. However, detailed mechanistic aspects of CAR activation by 4-NP are enigmatic, and it is not known if 4-NP can directly interact with the CAR ligand binding domain (LBD). Here, we examined interactions of individual branched (22NP, 33NP, and 353NP) and linear 4-NPs with CAR variants using molecular dynamics (MD) simulations, cellular experiments with various CAR expression constructs, recombinant CAR LBD in a TR-FRET assay, or a differentiated HepaRG hepatocyte cellular model. Our results demonstrate that branched 4-NPs display more stable poses to activate both wild-type CAR1 and CAR3 variant LBDs in MD simulations. Consistently, branched 4-NPs activated CAR3 and CAR1 LBD more efficiently than linear 4-NP. Furthermore, in HepaRG cells, we observed that all 4-NPs upregulated CYP2B6 mRNA, a relevant hallmark for CAR activation. This is the first study to provide detailed insights into the direct interaction between individual 4-NPs and human CAR-LBD, as well as its dominant variant CAR3. The work could contribute to the safer use of individual 4-NPs in many areas of industry.


Assuntos
Fenóis , Humanos , Fenóis/química , Fenóis/metabolismo , Receptor Constitutivo de Androstano/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Disruptores Endócrinos/química , Simulação de Dinâmica Molecular
3.
Int J Mol Med ; 53(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186319

RESUMO

Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non­alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non­alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA­treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II­driven respiration and ß­oxidation were linked to increased complex I and II activities in FFA­treated HepaRG cells, but not in FFA­treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA­treated HepaRG cells than in FFA­treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA­treated HepaRG cells, but not in FFA­treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early­stage NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Células Hep G2 , Mitocôndrias , Respiração , Linhagem Celular , Ácidos Graxos não Esterificados , Triglicerídeos
4.
Arch Toxicol ; 98(1): 223-231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37833491

RESUMO

Physiology-based pharmacokinetic modeling suggests that rifabutin can out-balance P-glycoprotein (P-gp) induction by concurrent P-gp inhibition. However, clinical or experimental evidence for this Janus-faced rifabutin effect is missing. Consequently, LS180 cells were exposed to a moderately (2 µM) and strongly (10 µM) P-gp-inducing concentration of rifampicin or rifabutin for 6 days. Cellular accumulation of the fluorescent P-gp substrate rhodamine 123 was evaluated using flow cytometry, either without (induction only) or with adding rifamycin drug to the cells during the rhodamine 123 efflux phase (induction + potential inhibition). Rhodamine 123 accumulation was decreased similarly by both drugs after 6-day exposure (2 µM: 55% residual fluorescence compared to non-induced cells, P < 0.01; 10 µM: 30% residual fluorescence compared to non-induced cells, P < 0.001), indicating P-gp induction. Rhodamine 123 influx transporters mRNA expressions were not affected, excluding off-target effects. Acute re-exposure to rifabutin, however, considerably re-increased rhodamine 123 accumulation (2 µM induction: re-increase by 55%, P < 0.01; 10 µM induction: 49% re-increase, P < 0.001), suggesting P-gp inhibition. In contrast, rifampicin only had weak effects (2 µM induction: no re-increase; 10 µM induction: 16% re-increase; P < 0.05). Molecular docking analysis eventually revealed that rifabutin has a higher binding affinity to the inhibitor binding site of P-gp than rifampicin (ΔG (kcal/mol) = -11.5 vs -5.3). Together, this study demonstrates that rifabutin can at least partly mask P-gp induction by P-gp inhibition, mediated by high affinity binding to the inhibitory site of P-gp.


Assuntos
Rifabutina , Rifampina , Rifampina/farmacologia , Rifabutina/farmacologia , Rodamina 123/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Simulação de Acoplamento Molecular
5.
J Med Chem ; 67(1): 81-109, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38157261

RESUMO

3,5-Dinitrobenzylsulfanyl tetrazoles and 1,3,4-oxadiazoles, previously identified as having high in vitro activities against both replicating and nonreplicating mycobacteria and favorable cytotoxicity and genotoxicity profiles were investigated. First we demonstrated that these compounds act in a deazaflavin-dependent nitroreduction pathway and thus require a nitro group for their activity. Second, we confirmed the necessity of both nitro groups for antimycobacterial activity through extensive structure-activity relationship studies using 32 structural types of analogues, each in a five-membered series. Only the analogues with shifted nitro groups, namely, 2,5-dinitrobenzylsulfanyl oxadiazoles and tetrazoles, maintained high antimycobacterial activity but in this case mainly as a result of DprE1 inhibition. However, these analogues also showed increased toxicity to the mammalian cell line. Thus, both nitro groups in 3,5-dinitrobenzylsulfanyl-containing antimycobacterial agents remain essential for their high efficacy, and further efforts should be directed at finding ways to address the possible toxicity and solubility issues, for example, by targeted delivery.


Assuntos
Mycobacterium tuberculosis , Animais , Oxidiazóis/farmacologia , Oxidiazóis/química , Tetrazóis/farmacologia , Tetrazóis/química , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Antituberculosos/química , Relação Estrutura-Atividade , Nitrorredutases , Mamíferos
6.
Toxicol Sci ; 196(2): 200-217, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632784

RESUMO

Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the ß-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos e Sais Biliares/metabolismo , Carvedilol/farmacologia , Carvedilol/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Proteínas de Membrana Transportadoras/metabolismo , Homeostase
7.
Eur J Med Chem ; 259: 115631, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473690

RESUMO

Following the discovery of 2-(3-methoxyphenyl)-3,4-dihydroquinazoline-4-one and 2-(3-methoxyphenyl)quinazoline-4-thione as potent, but non-specific activators of the human Constitutive Androstane Receptor (CAR, NR1I3), a series of quinazolinones substituted at the C2 phenyl ring was prepared to examine their ability to selectively modulate human CAR activity. Employing cellular and in vitro TR-FRET assays with wild-type CAR or its variant 3 (CAR3) ligand binding domains (LBD), several novel partial human CAR agonists and antagonists were identified. 2-(3-Methylphenyl) quinazolinone derivatives 7d and 8d acted as partial agonists with the recombinant CAR LBD, the former in nanomolar units (EC50 = 0.055 µM and 10.6 µM, respectively). Moreover, 7d did not activate PXR, and did not show any signs of cytotoxicity. On the other hand, 2-(4-bromophenyl)quinazoline-4-thione 7l possessed significant CAR antagonistic activity, although the compound displayed no agonistic or inverse agonistic activities. A compound possessing purely antagonistic effect was thus identified for the first time. These and related compounds may serve as a remedy in xenobiotic intoxication or, conversely, in suppression of undesirable hepatic CAR activation.


Assuntos
Receptor Constitutivo de Androstano , Receptores de Esteroides , Humanos , Receptores Citoplasmáticos e Nucleares , Ligantes , Quinazolinas/farmacologia , Tionas , Receptores de Esteroides/agonistas , Receptores de Esteroides/metabolismo
8.
J Med Chem ; 66(4): 2422-2456, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36756805

RESUMO

The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.


Assuntos
Receptor Constitutivo de Androstano , Receptores de Esteroides , Animais , Humanos , Camundongos , Receptor Constitutivo de Androstano/agonistas , Receptor Constitutivo de Androstano/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/agonistas , Receptores de Esteroides/química
9.
Crit Rev Food Sci Nutr ; 63(19): 3279-3301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34698593

RESUMO

As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.


Assuntos
Receptores de Esteroides , Humanos , Receptor de Pregnano X , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Resveratrol , Compostos Fitoquímicos/farmacologia
10.
ChemMedChem ; 18(4): e202200556, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36398403

RESUMO

Farnesoid X receptor (FXR) is a nuclear receptor with an essential role in regulating bile acid synthesis and cholesterol homeostasis. FXR activation by agonists is explained by an αAF-2-trapping mechanism; however, antagonism mechanisms are diverse. We discuss microsecond molecular dynamics (MD) simulations investigating our recently reported FXR antagonists 2a and 2 h. We study the antagonist-induced conformational changes in the FXR ligand-binding domain, when compared to the synthetic (GW4064) or steroidal (chenodeoxycholic acid, CDCA) FXR agonists in the FXR monomer or FXR/RXR heterodimer r, and in the presence and absence of the coactivator. Our MD data suggest ligand-specific influence on conformations of different FXR-LBD regions, including the α5/α6 region, αAF-2, and α9-11. Changes in the heterodimerization interface induced by antagonists seem to be associated with αAF-2 destabilization, which prevents both co-activator and co-repressor recruitment. Our results provide new insights into the conformational behaviour of FXR, suggesting that FXR antagonism/agonism shift requires a deeper assessment than originally proposed by crystal structures.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/química , Ligantes , Receptores Citoplasmáticos e Nucleares , Ácido Quenodesoxicólico/farmacologia
11.
Cells ; 11(19)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230936

RESUMO

The pregnane X receptor (PXR, NR1I2) is a xenobiotic-activated transcription factor with high levels of expression in the liver. It not only plays a key role in drug metabolism and elimination, but also promotes tumor growth, drug resistance, and metabolic diseases. It has been proposed as a therapeutic target for type II diabetes, metabolic syndrome, and inflammatory bowel disease, and PXR antagonists have recently been considered as a therapy for colon cancer. There are currently no PXR antagonists that can be used in a clinical setting. Nevertheless, due to the large and complex ligand-binding pocket (LBP) of the PXR, it is challenging to discover PXR antagonists at the orthosteric site. Alternative ligand binding sites of the PXR have also been proposed and are currently being studied. Recently, the AF-2 allosteric binding site of the PXR has been identified, with several compounds modulating the site discovered. Herein, we aimed to summarize our current knowledge of allosteric modulation of the PXR as well as our attempt to unlock novel allosteric sites. We describe the novel binding function 3 (BF-3) site of PXR, which is also common for other nuclear receptors. In addition, we also mention a novel allosteric site III based on in silico prediction. The identified allosteric sites of the PXR provide new insights into the development of safe and efficient allosteric modulators of the PXR receptor. We therefore propose that novel PXR allosteric sites might be promising targets for treating chronic metabolic diseases and some cancers.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Esteroides , Sítio Alostérico , Furilfuramida , Humanos , Ligantes , Receptor de Pregnano X , Receptores Citoplasmáticos e Nucleares , Receptores de Esteroides/metabolismo , Xenobióticos
12.
Bioconjug Chem ; 33(10): 1825-1836, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197842

RESUMO

As angiogenesis plays a key role in tumor growth and metastasis, the angiogenic process has attracted scientific interest as a target for diagnostic and therapeutic agents. Factors influencing angiogenesis include the vascular endothelial growth factor (VEGF) family and the two associated receptor types (VEGFR-1 and VEGFR-2). VEGFR-1/-2 detection and quantification in cancer lesions are essential for tumor process management. As a result of the advantageous pharmacokinetics and image contrast, peptides radiolabeled with PET emitters have become interesting tools for the visualization of VEGFR-1/-2-positive tumors. In this study, we prepared 68Ga-labeled peptides containing 15 (peptide 1) and 23 (peptide 2) amino acids as new PET tracers for tumor angiogenic process imaging. METHODS: The peptides were conjugated with NODAGA-tris(t-Bu ester) and subsequently radiolabeled with [68Ga]Ga-chloride. The prepared [68Ga]Ga-NODAGA-peptide 1 and [68Ga]Ga-NODAGA-peptide 2 were tested for radiochemical purity and saline/plasma stability. Consequently, the binding affinity toward VEGFRs was assessed in vitro on human glioblastoma and kidney carcinoma cells. The found peptide receptor affinity was compared with the calculated values in the PROtein binDIng enerGY prediction (PRODIGY) server. Finally, the biodistribution study was performed on BALB/c female mice to reveal the basic pharmacokinetic behavior of radiopeptides. RESULTS: The in vitro affinity testing of [68Ga]Ga-NODAGA-peptides 1 and 2 showed retained receptor binding as characterized by equilibrium dissociation constant (KD) values in the range of 0.5-1.2 µM and inhibitory concentration 50% (IC50) values in the range of 3.0-5.6 µM. Better binding properties of peptide 2 to VEGFR-1/-2 were found in the PRODIGY server. The biodistribution study on mice showed remarkable accumulation of both peptides in the kidneys and urinary bladder with a short half-life after intravenous application. The in vitro plasma stability of [68Ga]Ga-NODAGA-peptide 2 was superior to that of [68Ga]Ga-NODAGA-peptide 1. CONCLUSIONS: The obtained results demonstrated a high radiolabeling yield with no need for purification and preserved binding potency of 68Ga-labeled peptides 1 and 2 toward VEGFRs in cancer cells. The peptide-receptor protein interaction assessed in protein-peptide docking determined the strongest interaction of peptide 2 with domain 2 of VEGFR-2 in addition to a more acceptable plasma stability (t1/2 = 120 min) than that for peptide 1. We found both radiolabeled peptides very potent in their receptor binding, which makes them suitable imaging agents. The rapid transition of the radiopeptides into the urinary tract indicates suitable pharmacokinetic characteristics.


Assuntos
Radioisótopos de Gálio , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Humanos , Camundongos , Radioisótopos de Gálio/química , Distribuição Tecidual , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Tomografia por Emissão de Pósitrons/métodos , Cloretos , Compostos Heterocíclicos com 1 Anel/química , Peptídeos/química , Receptores de Fatores de Crescimento do Endotélio Vascular , Camundongos Endogâmicos BALB C , Aminoácidos , Ésteres , Linhagem Celular Tumoral
13.
Talanta ; 245: 123465, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427949

RESUMO

This manuscript reports on a fully automatic sequential injection system incorporating a 3D printed module for real-time monitoring of the release of Metridia luciferase from a modified liver epithelial cell line. To this end, a simple and effective approach for the automation of flash-type chemiluminescence assays was developed. The 3D printed module comprised an apical and a basal compartment that enabled monitoring membrane processes on both sides of the cell monolayer aimed at elucidating the direction of luciferase release. A natural release was observed after transfection with the luciferase plasmid by online measurement of the elicited light from the reaction of the synthesized luciferase with the coelenterazine substrate. Model substances for acute toxicity from the group of cholic acids - chenodeoxycholic and deoxycholic acids - were applied at the 1.0 and 0.5 mmol L-1 levels. The tested cholic acids caused changes in cell membrane permeability that was accompanied by an increased luciferase release. The obtained kinetic profiles were evaluated based on the delay between the addition of the toxic substance and the increase of the chemiluminescence signal. All experiments were carried out in a fully automatic system in ca. 5 min per sample in 30 min intervals and no manual interventions were needed for a sampling period of at least 6 h.


Assuntos
Copépodes , Animais , Ácidos Cólicos , Copépodes/metabolismo , Cinética , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes
14.
Front Physiol ; 13: 859294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35388287

RESUMO

Multidrug resistance-associated protein 2 (Mrp2) mediates biliary secretion of anionic endobiotics and xenobiotics. Genetic alteration of Mrp2 leads to conjugated hyperbilirubinemia and predisposes to the development of intrahepatic cholestasis of pregnancy (ICP), characterized by increased plasma bile acids (BAs) due to mechanisms that are incompletely understood. Therefore, this study aimed to characterize BA metabolomics during experimental Mrp2 deficiency and ICP. ICP was modeled by ethinylestradiol (EE) administration to Mrp2-deficient (TR) rats and their wild-type (WT) controls. Spectra of BAs were analyzed in plasma, bile, and stool using an advanced liquid chromatography-mass spectrometry (LC-MS) method. Changes in BA-related genes and proteins were analyzed in the liver and intestine. Vehicle-administered TR rats demonstrated higher plasma BA concentrations consistent with reduced BA biliary secretion and increased BA efflux from hepatocytes to blood via upregulated multidrug resistance-associated protein 3 (Mrp3) and multidrug resistance-associated protein 4 (Mrp4) transporters. TR rats also showed a decrease in intestinal BA reabsorption due to reduced ileal sodium/bile acid cotransporter (Asbt) expression. Analysis of regulatory mechanisms indicated that activation of the hepatic constitutive androstane receptor (CAR)-Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by accumulating bilirubin may be responsible for changes in BA metabolomics in TR rats. Ethinylestradiol administration to TR rats further increased plasma BA concentrations as a result of reduced BA uptake and increased efflux via reduced Slco1a1 and upregulated Mrp4 transporters. These results demonstrate that Mrp2-deficient organism is more sensitive to estrogen-induced cholestasis. Inherited deficiency in Mrp2 is associated with activation of Mrp3 and Mrp4 proteins, which is further accentuated by increased estrogen. Bile acid monitoring is therefore highly desirable in pregnant women with conjugated hyperbilirubinemia for early detection of intrahepatic cholestasis.

15.
Mol Nutr Food Res ; 66(9): e2200070, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35184385

RESUMO

SCOPE: CYP3A4 is the most important drug-metabolizing enzyme regulated via the vitamin D receptor (VDR) in the intestine. However, less is known about VDR in the regulation of CYP3A4 and other drug-metabolizing enzymes in the liver. METHODS AND RESULTS: This study investigates whether 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3 ) regulates major cytochrome P450 enzymes, selected phase I and II enzymes, and transporters involved in xenobiotic and steroidal endobiotic metabolism in 2D and 3D cultures of human hepatocytes. The authors found that 1α,25(OH)2 D3 increases hepatic CYP3A4 expression and midazolam 1'-hydroxylation activity in 2D hepatocytes. The results are confirmed in 3D spheroids, where 1α,25(OH)2 D3 has comparable effect on CYP3A4 mRNA expression as 1α-hydroxyvitamin D3 , an active vitamin D metabolite. Other regulated genes such as CYP1A2, AKR1C4, SLC10A1, and SLCO4A1 display only mild changes in mRNA levels after 1α,25(OH)2 D3 treatment in 2D hepatocytes. Expression of other cytochrome P450, phase I and phase II enzyme, or transporter genes are not significantly influenced by 1α,25(OH)2 D3 . Additionally, the effect of VDR activation on CYP3A4 mRNA expression is abolished by natural dietary compound sulforaphane, a common suppressor of pregnane X receptor (PXR) and constitutive androstane receptor (CAR). CONCLUSION: This study proposes that VDR or vitamin D supplementation is unlikely to significantly influence liver detoxification enzymes apart from CYP3A4.


Assuntos
Citocromo P-450 CYP3A , Xenobióticos , Citocromo P-450 CYP3A/genética , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Hepatócitos , Humanos , RNA Mensageiro , Receptores de Calcitriol/genética , Vitamina D/farmacologia , Xenobióticos/farmacologia
16.
Biochem Pharmacol ; 197: 114905, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971590

RESUMO

The constitutive androstane receptor (CAR) controls xenobiotic clearance, regulates liver glucose, lipid metabolism, and energy homeostasis. These functions have been mainly discovered using the prototypical mouse-specific CAR ligand TCPOBOP in wild-type or CAR null mice. However, TCPOBOP is reported to result in some off-target metabolic effects in CAR null mice. In this study, we compared the metabolic effects of TCPOBOP using lipidomic, transcriptomic, and proteomic analyses in wild-type and humanized CAR-PXR-CYP3A4/3A7 mice. In the model, human CAR retains its constitutive activity in metabolism regulation; however, it is not activated by TCPOBOB. Notably, we observed that TCPOBOP affected lipid homeostasis by elevating serum and liver triglyceride levels and promoted hepatocyte hypertrophy in humanized CAR mice. Hepatic lipidomic analysis revealed a significant accumulation of triglycerides and decrease of its metabolites in humanized CAR mice. RNA-seq analysis has shown divergent gene expression levels in wild-type and humanized CAR mice. Gene expression regulation in humanized mice is mainly involved in lipid metabolic processes and in the PPAR, leptin, thyroid, and circadian clock pathways. In contrast, CAR activation by TCPOBOP in wild-type mice reduced liver and plasma triglyceride levels and induced a typical transcriptomic proliferative response in the liver. In summary, we identified TCPOBOP as a disruptor of lipid metabolism in humanized CAR mice. The divergent effects of TCPOBOP in humanized mice in comparison with the prototypical CAR-mediated response in WT mice warrant the use of appropriate model ligands and humanized animal models during the testing of endocrine disruption and the characterization of adverse outcome pathways.


Assuntos
Receptor Constitutivo de Androstano/agonistas , Receptor Constitutivo de Androstano/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Piridinas/administração & dosagem , Animais , Humanos , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Arch Toxicol ; 96(1): 195-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689256

RESUMO

The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 µM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.


Assuntos
Receptores de Esteroides , Citocromo P-450 CYP3A/metabolismo , Hepatócitos/metabolismo , Humanos , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
18.
Front Pharmacol ; 12: 703279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803668

RESUMO

Cardiovascular diseases (CVDs) lead to higher morbidity and mortality in rheumatoid arthritis; thus, we aimed to determine whether patients who had discontinued methotrexate treatment before the study enrollment (group MTX 0) were at a higher risk of CVD than patients treated with methotrexate at the time of the data collection (group MTX 1). A retrospective, prospective, observational, cross-sectional study was conducted. A total of 125 patients were enrolled in the study. Patients from the MTX 0 group (n = 35) were not treated with methotrexate for 7.54 (SD ± 4.21) years in average. Medical documentation as well as information taken in patient examinations during regular rheumatologist visits was used to obtain the required data. The composite of any CVD occurred less frequently in patients in the MTX 1 group than in the MTX 0 group (18.8 vs. 40.0%, OR 0.35, 95% CI, 0.15 to 0.83; p = 0.017) with a non-significant trend after adjustment for other treatments, which differed between study groups at the baseline (p = 0.054). Significant difference was found for the reduction of myocardial infarction in the MTX 1 group compared to the MTX 0 group (3.5 vs. 14.3%, OR 0.22, 95% CI, 0.05 to 0.97; p = 0.046). There were 4 deaths (4.7%) in the MTX 1 group as compared with 7 (20.0%) in the MTX 0 group (OR 0.20, 95% CI, 0.05 to 0.73; p = 0.015). Our results demonstrate that patients who discontinued methotrexate treatment are at a significantly higher risk of CVD and all-cause mortality. Based on our findings, we recommend stricter control of CVD in cases of methotrexate discontinuation.

19.
Front Pharmacol ; 12: 713149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483922

RESUMO

Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 µM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.

20.
Phytomedicine ; 92: 153736, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560520

RESUMO

BACKGROUND: Quercetin is a natural flavonoid, which widely exists in nature, such as tea, coffee, apples, and onions. Numerous studies have showed that quercetin has multiple biological activities such as anti-oxidation, anti-inflammatory, and anti-aging. Hence, quercetin has a significant therapeutic effect on cancers, obesity, diabetes, and other diseases. In the past decades, a large number of studies have shown that quercetin combined with other agents can significantly improve the overall therapeutic effect, compared to single use. PURPOSE: This work reviews the pharmacological activities of quercetin and its derivatives. In addition, this work also summarizes both in vivo and in vitro experimental evidence for the synergistic effect of quercetin against cancers and metabolic diseases. METHODS: An extensive systematic search for pharmacological activities and synergistic effect of quercetin was performed considering all the relevant literatures published until August 2021 through the databases including NCBI PubMed, Scopus, Web of Science, and Google Scholar. The relevant literatures were extracted from the databases with following keyword combinations: "pharmacological activities" OR "biological activities" OR "synergistic effect" OR "combined" OR "combination" AND "quercetin" as well as free-text words. RESULTS: Quercetin and its derivatives possess multiple pharmacological activities including anti-cancer, anti-oxidant, anti-inflammatory, anti-cardiovascular, anti-aging, and neuroprotective activities. In addition, the synergistic effect of quercetin with small molecule agents against cancers and metabolic diseases has also been confirmed. CONCLUSION: Quercetin cooperates with agents to improve the therapeutic effect by regulating signal molecules and blocking cell cycle. Synergistic therapy can reduce the dose of agents and avoid the possible toxic and side effects in the treatment process. Although quercetin treatment has some potential side effects, it is safe under the expected use conditions. Hence, quercetin has application value and potential strength as a clinical drug. Furthermore, quercetin, as the main effective therapeutic ingredient in traditional Chinese medicine, may effectively treat and prevent coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19 , Quercetina , Antioxidantes/farmacologia , Humanos , Extratos Vegetais , Quercetina/farmacologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...